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Abstract

The reporting methods used in large scale assessments such as the National Assessment of

Educational Progress (NAEP) rely on a latent regression model. The first component of the

model consists of a p-scale IRT measurement model that defines the response probabilities

on a set of cognitive items in p scales depending on a p-dimensional latent trait variable

θ = (θ1, . . . θp). In the second component, the conditional distribution of this latent trait

variable θ is modeled by a multivariate, multiple linear regression on a set of predictor

variables, which are usually based on student, school and teacher variables in assessments

such as NAEP.

To fit the latent regression model using the maximum (marginal) likelihood

estimation technique, multivariate integrals have to be evaluated. In the computer program

MGROUP used by ETS for fitting the latent regression model to data from NAEP and

other programs, the integration is currently done either by numerical quadrature for

problems up to two dimensions or by an approximation of the integral. CGROUP, the

current operational version of the MGROUP program used in NAEP and other assessments

since 1993, is based on Laplace approximation, which may not provide fully satisfactory

results, especially if the number of items per scale is small (see, e.g., Thomas, 1993a, or von

Davier & Sinharay, 2004). There is scope for improvement in the technique used.

This paper extends the NAEP BGROUP program to higher dimensions. Two real

data analyses, one with a medium-sized data set and another with a large data set, show

that the extension promises to be useful for fitting the NAEP model.
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1. Introduction

National Assessment of Educational Progress (NAEP), the only regularly

administered and congressionally mandated national assessment program (see, e.g., Beaton

& Zwick, 1992), is an ongoing survey of the academic achievement of students in the United

States in a number of subject areas such as reading, writing, and mathematics. For several

reasons (e.g., von Davier & Sinharay, 2004; Mislevy, Johnson, & Muraki, 1992), NAEP

reporting methods started using in 1984 a multilevel statistical model consisting of two

components: (a) an item response theory (IRT) component at the first level and (b) a linear

regression regression component at the second level (see, e.g., Beaton, 1987; Mislevy et al.,

1992). Other large scale educational assessments such as the International Adult Literacy

Study (IALS; Kirsch, 2001), Trends in Mathematics and Science Study (TIMSS; Martin &

Kelly, 1996), and Progress in International Reading Literacy Study (PIRLS; Mullis, Martin,

Gonzalez, & Kennedy, 2003) also adopted essentially the same model.

This model is often referred to as a latent regression model. An algorithm for

estimating the parameters of this model is implemented in the MGROUP set of programs,

which is an ETS product. MGROUP computes the maximum likelihood estimates of the

parameters of the model using a version of the expectation-maximization (EM) algorithm

(Dempster, Laird, & Rubin, 1977) suggested by Mislevy (1984, 1985). The algorithm

requires the values of the posterior mean and the posterior standard deviation (SD) of

the proficiency variable θ for each examinee, computation of which involves integration

with respect to the multivariate θ. For problems up to two dimensions (subscales), the

integration is computed using numerical quadrature implemented in the BGROUP version

(Beaton, 1987) of the MGROUP program. For higher dimensions, no numerical integration

routine is available and an approximation of the integral is used. The CGROUP version

of MGROUP, the current operational procedure used in NAEP and other assessments for

tests with more than two dimensions, is based on the Laplace approximation (Kass &

Steffey, 1989) that ignores the higher-order derivatives of the examinee posterior distribution

and may not provide accurate results, especially for higher dimensions. For example, a

graphical plot for a data example in Thomas (1993a) shows that CGROUP overestimates

the high examinee posterior variances for an assessment with two subscales (dimensions).
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Similar results have been found in von Davier and Sinharay (2004). Further, it is not even

known how accurate CGROUP results are for more than two dimensions, where the Laplace

approximation may result in considerably inaccurate results. Under these circumstances, an

operational program that can perform numerical quadrature for more than two dimensions

and hence does not require any approximations may be of great help.

This paper examines a successful extension of the BGROUP version of MGROUP

to more than two dimensions. Two real data examples, one with a medium-sized data

set and another with a large data set, show that the results produced by the extension of

BGROUP are often different from those produced by CGROUP.

Section 2 describes the current NAEP model and estimation procedure; included

is a detailed description of the BGROUP procedure. Section 3 discusses the results from

application of the extension of the BGROUP to two real data examples. Section 4 discusses

the conclusions and future work.

2. The NAEP Statistical Model and Estimation Method

2.1 The Latent Regression Model

NAEP employs a latent regression model utilizing an IRT measurement model.

Assume that the unique p-dimensional latent proficiency vector for examinee i is

θi = (θi1, θi2, . . . θip)
′. In operational NAEP assessments, p could be any integer between 1

and 5.

Let us denote the response vector to the test items for examinee i as

yi = (yi1,yi2, . . . ,yip), where, yik, a vector of responses, contributes information about θik.

The likelihood for an examinee is given by

l(θi) =

p∏

q=1

lq(yiq|θiq)· (1)

Each quantity lq(yiq|θiq) above is given by products of terms from a univariate IRT model;

usually the terms are from the three-parameter logistic (3PL) model or generalized partial

credit model (GPCM). For example, if the items measuring θiqs are all multiple-choice
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items, lq(yiq|θiq) is given by

lq(yiq|θiq) =
∏

j

p
yiqj

iqj (1 − piqj)
1−yiqj ,

where piqj = cjq + (1− cjq)(1 + eajq(bjq−θiq))−1, and yiq = (yiq1,yiq2, . . . ,yiqJ). For reasons to

be discussed later, the dependence of (1) on the item parameters is suppressed.

Suppose xi = (xi1, xi2, . . . xim) are m fully measured demographic and educational

characteristics corresponding to the examinee. Conditional on xi, the examinee

proficiency vector θi is assumed to follow a multivariate normal prior distribution, that is,

θi|xi ∼ N(Γ′xi,Σ). The mean parameter matrix Γ and the nonnegative definite variance

matrix Σ are assumed to be the same for all examinee groups.

Under this setup, L(Γ,Σ|X,Y ), the (marginal) likelihood function for (Γ,Σ)

based on the data (X,Y ), is given by

L(Γ,Σ|X,Y ) =
n∏

i=1

∫
l1(yi1|θi1) . . . lp(yip|θip)φ(θi|Γ′xi,Σ)dθi, (2)

where n is the number of examinees, and φ(.|., .) is the multivariate normal density function.

2.2 NAEP Estimation Process and the MGROUP Program

NAEP uses a three-stage estimation process for fitting the above mentioned latent

regression model and making inferences. The first stage, scaling, fits a simple IRT model

(3PL model for multiple-choice items and the GPCM for constructed-response items) to

the examinee response data and estimates the item parameters. The prior distribution used

in this step is not θi|xi ∼ N(Γ′xi,Σ) as described above, but is a discrete distribution over

41 quadrature points for each component of θ so that the probabilities at the 41 points

are estimated from the data; also the subscales are assumed to be independent a priori.

The second stage, conditioning, assumes that the item parameters are known and equal

to the estimates found in scaling and fits the model in (2) to the data (i.e., estimates Γ

and Σ as a first part). In the second part of the conditioning step, plausible values for all

examinees are obtained using the parameter estimates obtained in scaling and the first part

of conditioning—the plausible values are used to estimate examinee subgroup averages.

The third stage of the NAEP estimation process, called variance estimation, estimates the
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variances corresponding to the examinee subgroup averages using a jackknife approach

(see, e.g., Johnson & Jenkins, 2004). Our research will focus on the conditioning step and

assume that the scaling has already been done (i.e., the item parameters are fixed); this is

the reason we suppress the dependence of (1) on the item parameters.

Because we will be concerned with the conditioning step, the remaining part of

the section provides a more detailed discussion of it. The first objective of this step is to

estimate Γ and Σ from the data. If the θis were known, the maximum likelihood estimators

of Γ and Σ would be

Γ̂ = (X ′X)−1X ′ (θ1, θ2, . . .θn)′ , (3)

Σ̂ =
1

n

∑

i

(θi − Γ′xi)(θi − Γ′xi)
′· (4)

However, θis are actually unknown. Mislevy (1984, 1985) shows that the maximum

likelihood estimates of Γ and Σ under unknown θis can be obtained using an EM algorithm

(Dempster et al., 1977). The EM algorithm iterates through a number of expectation steps

(E-step) and maximization steps (M-step). The expression for (Γt+1,Σt+1), the updated

value of the parameters in the tth M-step, is obtained as:

Γt+1 = (X ′X)−1X ′
(
θ̃1t, θ̃2t, . . . θ̃nt

)′
, (5)

Σt+1 =
1

n

[
∑

i

Var(θi|X,Y ,Γt,Σt) +
∑

i

(θ̃it − Γ′
t+1xi)(θ̃it − Γ′

t+1xi)
′

]
, (6)

where θ̃it = E(θi|X,Y ,Γt,Σt) is the posterior mean for examinee i given the preliminary

parameter estimates of iteration t. The process is repeated until convergence of the

estimates Γ and Σ.

Equations (5) and (6) require the values of the posterior means E(θi|X,Y ,Γt,Σt)

and the posterior variances Var(θi|X,Y ,Γt,Σt) for the examinees, which are given by

E(θi|X,Y ,Γt,Σt) ≡
∫
θig(θi|X,Y ,Γt,Σt)dθi, and (7)

Var(θi|X,Y ,Γt,Σt) ≡
∫

(θi − E(θi|X,Y ,Γt,Σt))(θi − E(θi|X,Y ,Γt,Σt))
′

g(θi|X,Y ,Γt,Σt)dθi, (8)
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where the examinee posterior distribution g(θi|X,Y ,Γt,Σt) is given by

g(θi|X,Y ,Γt,Σt) ∝ l1(yi1|θi1) . . . lp(yip|θip)φ(θ|Γ′
txi,Σt) (9)

using (2). The proportionality constant in (9) is a function of yi, Γt, and Σt.

Correspondingly, the tth E-step computes the two required quantities for all the

examinees. The MGROUP set of programs at ETS perform the above mentioned EM

algorithm.

The MGROUP program consists of two primary controlling routines called PHASE1

and PHASE2. The former does some preliminary processing while the latter directs the EM

iterations. There are different versions of the MGROUP program depending on the method

used to perform the E-step in PHASE2: NGROUP (Beaton, 1988) using Bayesian normal

theory, BGROUP (which is used when the dimension of θi is up to two) using numerical

quadrature, CGROUP (Thomas, 1993a) using Laplace approximations, and Y-group

(von Davier & Yu, 2003) using seemingly unrelated regression (SUR; Zellner, 1962).

2.3 The Limitations of the Current Estimation Method

The BGROUP version of MGROUP program is the gold standard in MGROUP.

However, Thomas (1993b) mentioned that numerical quadrature is computationally

unfeasible for applications with more than two subscales. When the dimension of θi is

larger than two, CGROUP is the most appropriate and used operationally in NAEP. This

approach uses the Laplace approximation, which involves a Taylor-series expansion of an

integrand while ignoring higher-order derivatives of examinee posterior distributions, of the

posterior mean and variance. Details about the method can be found in Thomas (1993b,

pp. 316-317). The Laplace method does not provide an unbiased estimate of the quantity

it is approximating and may provide inaccurate results if higher order derivatives of the

examinee posterior distributions (that the Laplace method assumes to be equal to zero) are

not negligible. The error of approximation for each component of the mean and covariance

of θi is of order O( 1
k2 ) (e.g., Kass & Steffey, 1989), where k is the number of items measuring

skill corresponding to the component. Because the number of items given to each examinee

in large scale assessments such as NAEP is not too large (making k rather small), the error
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in the Laplace approximation may become nonnegligible, especially for high-dimensional

θis. Further, if the posterior distribution of θis is multimodal (which is not impossible,

especially for a small number of items), the method can perform poorly. Therefore the

CGROUP version of MGROUP is not entirely satisfactory. Figure 1 in Thomas (1993b),

where the posterior variance estimates of 500 randomly selected examinees using BGROUP

and CGROUP for two-dimensional θi are plotted, shows that the CGROUP provides

inflated variance estimates for examinees with large posterior variance (von Davier &

Sinharay, 2004, observed a similar phenomenon). The departure may be more severe for

θis in higher dimensions. Thus, the current NAEP estimation methods leave room for

improvement.

3. Extending BGROUP to Higher Dimensions

This section begins with a description of how the current NAEP BGROUP program

calculates the posterior means and variances in the E-step of the EM algorithm and then

proceeds to describe our extension of the BGROUP program.

3.1 Currently Used BGROUP E-step

Consider an assessment with one subscale (p = 1). Using notations introduced in

(1), let the likelihood term for an examinee with proficiency θ be l(θ). The quadrature

implemented for p = 1 evaluates the examinee posterior on a grid of m points q1, q2, . . . qm

on the θ-scale, computes the expectation of θk (for a scalar variance Σt, mean vector Γt,

and background information vector x) as

E(θk|X,Y ,Γt,Σt) ≈
∑m

i=1 qk
i l(qi)φ(qi|Γ′

tx,Σt)∑m
i=1 l(qi)φ(qi|Γ′

tx,Σt)
. (10)

The denominator in (10) estimates the normalizing constant of the examinee posterior

density. This approach is described in Beaton (1987).

The quadrature implemented for p=2 evaluates the examinee posterior on a grid of

m × m points, formed by q11, q12, . . . q1m on the θ1-scale and q21, q22, . . . q2m on the θ2-scale,

and computes the expectation of θk
1θ

l
2 (for a variance matrix Σt, mean matrix Γt, and
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background information vector x) as

E(θk
1θ

l
2|X,Y ,Γt,Σt) ≈

∑m
i=1

∑m
j=1 qk

1iq
l
2jl(q1i, q2j)φ(q1i, q2j|Γ′

tx,Σt)∑m
i=1

∑m
j=1 l(q1i, q2j)φ(q1i, q2j|Γ′

tx,Σt)
· (11)

Thomas (1993b) mentioned that numerical quadrature is computationally unfeasible

for applications with more than two subscales. However, with the recent advance in speed

of computing, it is possible to apply the same process to more than two dimensions.

3.2 Details of Our Implementation

The quadrature implemented for p dimensions evaluates the examinee posterior on

a grid of mp points, formed by q11, q12, . . . q1m on the θ1-scale, q21, q22, . . . q2m on the θ2-scale,

. . . qp1, qp2, . . . qpm on the θp-scale, and approximates (for a variance matrix Σt, mean matrix

Γt and background information vector x) E(θk1

1 θk2

2 . . . θ
kp
p |X,Y ,Γt,Σt) as

∑m
i1=1 . . .

∑m
ip=1 qk1

1i1
. . . q

kp

pipl(q1i1 , . . . qpip)φ(q1i1 , . . . , qpip|Γ′
tx,Σt)∑m

i1=1 . . .
∑m

ip=1 l(q1i1 , . . . qpip)φ(q1i1 , . . . , qpip|Γ′
tx,Σt)

. (12)

This brute-force approach is computationally costly and results in a long runtime for a

multivariate problem. Even in the case of a three-dimensional problem, the number of grid

points on which the computation of the posterior distribution for each examinee is required

runs as large as 413 = 68921 (because of the use of 41 quadrature points per dimension). In

higher dimensional problems such as the NAEP math assessment, the number of subscales

is up to 5, resulting in far more points to evaluate than would be feasible when using a

brute-force approach.

To overcome this problem, our implementation includes a more efficient approach

that makes use of the fact that the likelihood is factored (Thomas, 1993a) in latent

regressions assuming simple structure for the measurement model. In that case, using (1),

l(q1i1 , q2i2 , . . . qpip) =
∏

k

lk(qkik),

where lk() denotes the one-dimensional likelihood function corresponding to dimension k.

This form of the likelihood yields values that are numerically indistinguishable from zero if

at least one of the product terms vanishes. This means that all grid coordinates for which at
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least one lk(qkik) is zero may be ignored. Finally, using (12), the following approximation

of E(θk1

1 θk2

2 . . . θ
kp
p |X,Y ,Γt,Σt) is

∑
l1(q1i1

)...lp(qpip)6=0 qk1

1i1
. . . q

kp

pip
l1(q1i1) . . . lp(qpip)φ(q1i1 , . . . , qpip|Γ′

tx,Σt)
∑

l1(q1i1
)...lp(qpip )6=0 l(q1i1 , . . . qpip)φ(q1i1 , . . . , qpip|Γ′

tx,Σt)
. (13)

Further optimization is possible if a similar approach is taken to inform the

algorithm whether grid coordinates need to be evaluated based on the prior

φ(q1i1 , . . . , qpip|Γ′
tx,Σt) < ε,

which results in additional gains in speed. This is true particularly for high-dimensional

problems that contain very highly correlated dimensions such as the NAEP math

assessment. In these cases, grid coordinates that contain very dissimilar qkik are associated

with very low prior density values, which leads to values that are ignorable in the integral

evaluation. This additional optimization needs some more computation per grid coordinate,

but may save a lot of floating point multiplications in cases where dimensions are highly

correlated or the prior variances are small compared to the range of the integration intervals.

Comparisons of estimates obtained using the unoptimized brute-force version and

the first-level optimization using the above mentioned vanishing marginal likelihood rule

showed no noticeable differences for small three-dimensional test cases. Comparisons of the

results obtained using the unoptimized brute-force version and the second-level optimization

using the vanishing prior density showed very small differences in posterior means and

resulted in no noticeable differences in regression estimates or group statistics.

Therefore, the p-dimensional runs were carried out using the second-level

optimizations in order to cut down the time needed to evaluate the 41p integral by not

evaluating ignorable terms of the integral.

3.3 Results for the 2002 NAEP Reading Assessment at Grade 12

We ran our program extending BGROUP on small test data sets and compared the

results with those obtained from the operational programs. For test data sets with 1 and 2

subscales (i.e., p = 1, 2), the results from our program matched those from the operational

versions (BGROUP and CGROUP) very closely.
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Next, we applied our program to data from the 2002 NAEP reading assessment

at grade 12 (see, for example, http://nces.ed.gov/nationsreportcard/reading/results2002).

Each of 14,724 students was asked either two 25-minute blocks of questions or one 50-minute

block of questions; each block contains at least one passage and related set of approximately

10 to 12 comprehension questions (combination of four-option multiple-choice and

constructed response). Three subskills of reading are assessed: (a) reading for literary

experience, (b) reading for information, and (c) reading to perform a task. Thus, this is

an example where our work may be beneficial because for such three-subscale assessments,

CGROUP is the only currently available version of MGROUP for operational analysis.

On a PC with a 2.2 GHZ Pentium 4 processor with 512 MB RAM running Linux,

the program takes approximately 36 hours to converge. To reduce run time, we also ran

the extended BGROUP program using the CGROUP estimates as starting values—it took

about 12 hours. Results are practically indistinguishable whether we use the CGROUP

estimates as starting values or not.

We also ran the extended BGROUP using 101 quadrature points per dimension—

the error of approximation of the numerical quadrature formula (13) is expected to be

almost negligible for such a large number of quadrature points—thus, the estimates from

this run provide the gold standard that both CGROUP and the extended BGROUP with

41 quadrature points per dimension attempt to approximate. The estimates from extended

BGROUP with 41 quadrature points per dimension are very close to the gold standard

(results not shown)—this provides proof that the extended BGROUP program with 41

points performs adequately. The following discussion compares results from the CGROUP

and the extended BGROUP (with 41 quadrature points per dimension).

Figure 1 compares the estimated regression coefficients (i.e., estimates of

components of Γ) for CGROUP and extended BGROUP for the three subskills. The

differences between the two methods are negligible; the maximum difference is in the third

decimal place.

Table 1 shows the residual variance estimates Σ̂ from extended BGROUP and,

for convenience, the difference in these estimates from CGROUP and extended BGROUP.

The differences of results produced by the two methods are negligible. However, all the
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Figure 1. Comparison of regression coefficients from CGROUP and extended

BGROUP for the 2002 NAEP reading assessment at grade 12.

three variance component estimates and the three covariance estimates are slightly lower

for BGROUP than the corresponding CGROUP estimates.

Figures 2 and 3 compare the marginal posterior means and standard deviations

(SDs) of 1,000 randomly chosen examinees for CGROUP and extended BGROUP. Both

figures have a plot for each subscale.

Figure 2 also shows the differences roughly in the scale reported by NAEP. In

operational NAEP, a weighted average of the scores in the three subscales (with weights

0.35, 0.45, and 0.20 for literacy, information, and perform, respectively) is reported. NAEP

uses a complicated linking procedure involving data for grades 4, 8, and 12—this usually
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Table 1.

Residual Variances, Covariances, and Correlations

for the 2002 NAEP Reading Assessment at Grade 12

BGROUP CGROUP-BGROUP

Literary Information Perform Literary Information Perform

Literary 0.448 0.365 0.333 0.008 0.010 0.006

Information 0.784 0.483 0.356 0.007 0.008 0.008

Perform 0.712 0.733 0.488 -0.004 -0.001 0.014

Note. Residual variances are shown on main diagonals, covariances on upper off-diagonals, and

correlations on lower off-diagonals.

converts the composite score to a scale with mean of approximately 300 and an SD of

approximately 35. For the 2002 NAEP reading assessment at grade 12, the reported mean

of the composite was 287 and the SD of the composite was 35. We do not use the rigorous

NAEP linking procedure here, but instead use a simpler alternative; we compute the

weighted average of the posterior means in the three subscales for each examinee using the

weights 0.35, 0.45, and 0.20, as used in NAEP. Then we apply a linear transformation of

the resulting weighted average to convert it to a scale with a mean of 287 and an SD of 35.

Results produced by the CGROUP version are mostly close to those produced by

the extended BGROUP version. The CGROUP routine has a tendency to overestimate high

posterior means and underestimate low posterior means (the extent of underestimation being

more severe, especially for a few examinees). The CGROUP routine slightly overestimates

the extreme posterior SDs, a phenomenon that was observed by Thomas (1993a) and von

Davier and Sinharay (2004). The lowest point in all of the plots in Figure 2 belongs to the

same examinee; the same is true for the next three lowest points in all the plots. The lowest

three points in all the plots in Figure 3 belong to three examinees who are not outliers in

Figure 2.

Table 2 compares the subgroup means and SDs (in parentheses) from extended

BGROUP and the difference in these values from CGROUP and extended BGROUP—there
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Figure 2. Comparison of posterior means from CGROUP and extended BGROUP for

the 2002 NAEP reading assessment at grade 12.

seems to be little difference between the two methods from this aspect; however, the

BGROUP means are larger than or equal to the CGROUP means except for one entry. This

supports Figure 2, where the extent of underestimation of low posterior means by CGROUP

is larger than the extent of overestimation of high posterior means. The BGROUP SDs are

all slightly less than the CGROUP SDs, which is consistent with Figure 3.

3.4 Results for the 2002 NAEP Reading Assessment at Grade 8

The extended BGROUP program gave acceptable results for a moderately

large data set, so we applied it to an assessment with larger sample size, specif-
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Figure 3. Comparison of posterior SDs from CGROUP and extended BGROUP for

the 2002 NAEP reading assessment at grade 12.

ically, to data from the 2002 NAEP reading assessment at grade 8 (see, e.g.,

http://nces.ed.gov/nationsreportcard/reading/results2002). Altogether, about 115,000

students took the test, which was similar in structure to the 2002 NAEP reading assessment

at grade 12.

We ran the extended BGROUP program with CGROUP estimates as starting

values—the program took approximately 48 hours (94 iterations of the EM algorithm) to

converge on a PC with a 2.2 GHZ Pentium 4 processor and 512 MB RAM running Linux.

Figure 4 compares the regression coefficients for CGROUP and extended BGROUP

for the three subskills. The differences between the two methods are negligible; the
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Table 2.

Comparison of Subgroup Estimates From Extended BGROUP and CGROUP for the

2002 NAEP Reading Assessment at Grade 12

BGROUP CGROUP-BGROUP

Subgroup Literary Information Perform Literary Information Perform

Overall 0.015 0.027 0.019 -0.003 -0.002 -0.002

(0.959) (0.950) (1.003) (0.010) (0.007) (0.013)

Male -0.174 -0.152 -0.239 -0.004 -0.003 -0.004

(0.946) (0.961) (0.991) (0.011) (0.008) (0.013)

Female 0.198 0.200 0.268 -0.001 -0.001 0.002

(0.935) (0.907) (0.951) (0.009) (0.006) (0.011)

White 0.195 0.198 0.174 -0.001 -0.001 0.000

(0.910) (0.903) (0.961) (0.008) (0.006) (0.011)

Black -0.516 -0.429 -0.453 -0.007 -0.004 -0.005

(0.890) (0.888) (0.940) (0.013) (0.007) (0.013)

Hispanic -0.387 -0.357 -0.262 -0.008 -0.006 -0.005

(0.971) (0.986) (1.051) (0.016) (0.010) (0.014)

Asian 0.023 -0.013 -0.052 -0.005 -0.003 -0.003

(0.907) (0.910) (1.010) (0.010) (0.007) (0.013)

American -0.094 -0.276 -0.358 -0.002 -0.004 -0.008

Indian (0.960) (0.977) (1.027) (0.010) (0.010) (0.015)

maximum difference is in the third decimal place.

Table 3 shows the residual variance estimates Σ̂ from extended BGROUP and

the difference between CGROUP and extended BGROUP. The difference between the

two methods is negligible. However, all of the three variance component estimates and

the three covariance estimates are slightly lower for BGROUP than the corresponding

CGROUP estimates. The three correlation estimates are slightly higher for BGROUP than

the corresponding CGROUP estimates.
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Figure 4. Comparison of regression coefficients from CGROUP and extended

BGROUP for the 2002 NAEP reading assessment at grade 8.

Figures 5 and 6 compare the marginal posterior means and SDs of 1,000 randomly

chosen examinees for CGROUP and extended BGROUP for the three subskills. Figure 5

also shows the differences roughly in the same scale as reported by NAEP. We compute

the weighted average of the posterior means in the three subscales for each examinee using

the weights 0.4, 0.4, and 0.2, as used in NAEP. Then we applied a linear transformation of

the resulting weighted average to convert it to a scale with a mean of 264 and an SD of 35

(the reported values of the composite for the 2002 NAEP reading assessment at grade 8).

Results are very similar to those for the previous example (Figures 2 and 3); for example,

CGROUP slightly overestimates the extreme posterior SDs.
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Figure 5. Comparison of posterior means from CGROUP and extended BGROUP for

the 2002 NAEP reading assessment at grade 8.
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Figure 6. Comparison of posterior SDs from CGROUP and extended BGROUP for

the 2002 NAEP reading assessment at grade 8.
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Table 3.

Residual Variances, Covariances, and Correlations

for the 2002 NAEP Reading Assessment at Grade 8

BGROUP CGROUP-BGROUP

Literary Information Perform Literary Information Perform

Literary 0.517 0.363 0.339 0.010 0.004 0.004

Information 0.765 0.435 0.339 -0.006 0.009 0.005

Perform 0.733 0.800 0.413 -0.007 -0.006 0.010

Note. Residual variances are shown on main diagonals, covariances on upper off-diagonals, and

correlations on lower off-diagonals.

Table 4 compares the subgroup means and SDs (in parentheses) from BGROUP

and CGROUP for relevant subgroups—there seems to be little difference between the

two methods in this aspect as well. The BGROUP means are larger than or equal to the

CGROUP mean for all but three entries and the BGROUP SDs are all slightly less than

the CGROUP SDs.

4. Conclusions

CGROUP is the current operational method used in large-scale assessments

such as NAEP. Though CGROUP provides more accurate results than its predecessor

(N-group), it is not without problems, as demonstrated by Thomas (1993a) and von

Davier and Sinharay (2004). In particular, CGROUP is found to inflate variance estimates

for examinees with large posterior variances. Currently, there is no entirely satisfactory

alternative to CGROUP.

As this work shows, an extension of the BGROUP routine to more than two

dimensions provides a viable alternative to CGROUP. CGROUP was found to overestimate

the posterior SDs of examinees (and hence to overestimate the SDs of population

subgroups); CGROUP also was found to mostly underestimate low posterior means, mostly

overestimate high posterior means, and mostly underestimate the population subgroup

18



Table 4.

Comparison of Subgroup Estimates From Extended BGROUP and CGROUP for the

2002 NAEP Reading Assessment at grade 8

BGROUP CGROUP-BGROUP

Subgroup Literary Information Perform Literary Information Perform

Overall 0.027 0.022 0.022 -0.002 -0.001 -0.001

(0.984) (0.949) (0.970) (0.009) (0.008) (0.010)

Male -0.116 -0.078 -0.133 -0.003 -0.002 -0.002

(0.983) (0.962) (0.967) (0.009) (0.009) (0.010)

Female 0.170 0.123 0.178 0.000 0.000 0.001

(0.965) (0.925) (0.947) (0.008) (0.007) (0.009)

White 0.286 0.267 0.315 0.000 0.001 0.002

(0.897) (0.852) (0.849) (0.007) (0.006) (0.008)

Black -0.497 -0.447 -0.516 -0.006 -0.004 -0.005

(0.935) (0.897) (0.903) (0.011) (0.009) (0.011)

Hispanic -0.408 -0.434 -0.516 -0.005 -0.004 -0.005

(0.982) (0.981) (0.982) (0.010) (0.011) (0.012)

Asian 0.137 0.200 0.124 -0.001 0.000 0.000

(0.959) (0.944) (0.940) (0.008) (0.008) (0.010)

American -0.330 -0.299 -0.250 -0.004 -0.002 -0.002

Indian (0.946) (0.922) (0.953) (0.009) (0.008) (0.011)

means in the two examples here; this phenomenon has not been reported yet in literature.

One problem with the extension of BGROUP is run time. Currently, the extension takes

much longer to run than what can be afforded operationally. However, the program can

be used to check the accuracy of the CGROUP results in a secondary analysis. In an

attempt to make the extended BGROUP routine operational, we plan to apply a rescaling

of integrals (Haberman, 2003) in future to reduce the run time of the extended BGROUP

program—the idea is elaborated in the appendix.
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Appendix

Application of Rescaling of Integrals

Future work will include application of rescaling of the integral involved in

BGROUP, which should reduce its run time significantly. The Gauss-Hermite integration

technique approximates an integral of the form
∫ ∞
−∞ f(z)exp(−z2)dz as

∫ ∞

−∞
f(z)exp(−z2)dz ≈

I∑

i=1

ωif(zi), for ωi =
2I−1I!

√
π

I2{HI−1(zi)}2
, (14)

where zi is the ith zero of the Hermite polynomial HI(z) (see, e.g., Davis & Rabinowitz, 1967).

Tables of zi, ωi, and so on are available (e.g., Davis & Rabinowitz, 1967).

For multidimensional integration, such as for p−dimensional z, (14) can be

generalized using the cartesian product rule (see, e.g., Naylor & Smith, 1982; Smith, Skene,

Shaw, & Naylor, 1987) as

∫ ∞

−∞
f(z)exp(−z′z)dz ≈

I1∑

i1=1

I2∑

i2=1

. . .

Ip∑

ip=1

ω1,i1ω2,i2 . . . ωp,ipf(z1,i1 , z2,i2, . . . zp,ip), (15)

where ω1,i1, ω2,i2, . . . ωp,ip are obtained as in (14), the univariate case.

Haberman (2003) discussed an example of rescaling an unidimensional integral

where the goal is to obtain an estimate of

∫ ∞

−∞
b(z)exp(c(z))exp(−z2)dz. (16)

Suppose c(z) is maximized at z0. Then one may write

c(z) = c(z0) +
1

2
c′′(z0)(z − z0)

2 + δ(z),

where δ(z) ≡ c(z) − c(z0) − 1
2
c′′(z0)(z − z0)

2 Then one may express (16) as

exp(k)

∫ ∞

−∞
h(u)exp(−u2)du (17)

for some k and an h(u) that is much less variable than the original integrand b(z)exp(c(z))

and approaches 0 very rapidly as u becomes more distant from 0. An application of the

Gauss-Hermite integration with few points (e.g., Davis & Rabinowitz, 1967) is enough

to achieve a high level of accuracy, which would not be possible with (16). Naylor and
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Smith (1982) use a similar idea involving transformation of the original variables of

integration in an attempt to make the resulting density close to the standard multivariate

normal density.

Let us consider estimation of E(f(θ)|X,Y ,Γt,Σt) in MGROUP. For example,

f(θ) is the same as θ in (7), that is, while calculating expectation of θ. Let us denote θ0 to

be the mode of l(θ). We have

E(f(θ)|X,Y ,Γt,Σt) ≡
∫

f(θ)l(θ)φ(θ|Γ′x,Σ)dθ∫
l(θ)φ(θ|Γ′x,Σ)dθ

(18)

To compute (18) using numerical quadrature, one requires several quadrature points (41

points are used in current operational BGROUP), mainly because of the variability of the

integrand over the range of integration. However, it is possible to rescale the integral so

that a few quadrature points might be enough to estimate the integral to an acceptable

level of accuracy.

Applying the idea in Haberman (2003), the denominator in (18) can be written as
∫

f(θ)l(θ)φ(θ|Γ′x,Σ)dθ

≡
∫

f(θ)exp{u(θ)}φ(θ|Γ′x,Σ)dθ, for exp{u(θ)} ≡ l(θ)

≡
∫

f(θ)exp{u(θ0) +
1

2
(θ − θ0)

′u′′(θ0)(θ − θ0) + ∆(θ)}φ(θ|Γ′x,Σ)dθ as u′(θ0) ≡ 0

≡ eu(θ0)

∫
f(θ)exp(∆(θ))exp

{
−1

2
(θ − µ)′S−1(θ − µ)

}
dθ

where ∆(θ) = u(θ) − u(θ0) − 1
2
(θ − θ0)

′u′′(θ0)(θ − θ0),

µ = {Σ−1 − u′′(θ0)}−1
{
Σ−1Γ′x− u′′(θ0)θ0

}
, S =

{
Σ−1 − u′′(θ0)

}−1 ·

On the application of a transformation ψ = 1√
2
S−1/2(θ − µ), the above integral becomes

√
2|S1/2|eu(θ0)

∫
f

(
µ+ S1/2ψ

√
2
)

exp
{

∆
(
µ+ S1/2ψ

√
2
)}

exp {−ψ′ψ} dψ·

Now one can apply the multiple Gauss-Hermite integration given by (15) to the above. The

quantity exp {−ψ′ψ} forms the density of an independent normal vector and the quantity{
∆

(
µ+ S1/2ψ

√
2
)}

is much less variable (and close to zero) over the range of θ than is

u(θ). Therefore, multiple Gauss-Hermite integration with few points per dimension should

provide adequate accuracy and precision.

23




